v 1 2 1 Ju n 20 06 Distribution of particles which produces a desired radiation pattern

نویسنده

  • Alexander G. Ramm
چکیده

If Aq(β, α, k) is the scattering amplitude, corresponding to a potential q ∈ L 2(D), where D ⊂ R3 is a bounded domain, and eikα·x is the incident plane wave, then we call the radiation pattern the function A(β) := Aq(β, α, k), where the unit vector α, the incident direction, is fixed, and k > 0, the wavenumber, is fixed. It is shown that any function f(β) ∈ L2(S2), where S2 is the unit sphere in R3, can be approximated with any desired accuracy by a radiation pattern: ||f(β) − A(β)||L2(S2) < ǫ, where ǫ > 0 is an arbitrary small fixed number. The potential q, corresponding to A(β), depends on f and ǫ. There is a one-to-one correspondence between the above potential and the density of the number of small acoustically soft particles Dm ⊂ D, 1 ≤ m ≤ M , distributed in an a priori given bounded domain D ⊂ R3. The geometrical shape of a small particle Dm is arbitrary, the boundary Sm of Dm is Lipschitz uniformly with respect to m. The wave number k and the direction α of the incident upon D plane wave are fixed. It is shown that a suitable distribution of the above particles in D can produce the scattering amplitude A(α′, α), α′, α ∈ S2, at a fixed k > 0, arbitrarily close in the norm of L2(S2 × S2) to an arbitrary given scattering amplitude f(α′, α), corresponding to a real-valued potential q ∈ L2(D), i.e., corresponding to an arbitrary given refraction coefficient in D.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

70 06 v 1 1 J ul 2 00 5 Distribution of particles which produces a desired radiation pattern

A method is given for calculation of a distribution of small particles, embedded in a medium, so that the resulting medium would have a desired radiation pattern for the plane wave scattering by this medium.

متن کامل

v 2 2 6 Ju n 20 06 Distribution of particles which produces a desired radiation pattern

If Aq(β, α, k) is the scattering amplitude, corresponding to a potential q ∈ L 2(D), where D ⊂ R3 is a bounded domain, and eikα·x is the incident plane wave, then we call the radiation pattern the function A(β) := Aq(β, α, k), where the unit vector α, the incident direction, is fixed, and k > 0, the wavenumber, is fixed. It is shown that any function f(β) ∈ L2(S2), where S2 is the unit sphere i...

متن کامل

ar X iv : m at h - ph / 0 60 60 23 v 3 1 4 Ju n 20 06 Distribution of particles which produces a ” smart ” material

If A q (β, α, k) is the scattering amplitude, corresponding to a potential q ∈ L 2 (D), where D ⊂ R 3 is a bounded domain, and e ikα·x is the incident plane wave, then we call the radiation pattern the function A(β) := A q (β, α, k), where the unit vector α, the incident direction, is fixed, and k > 0, the wavenumber, is fixed. It is shown that any function f (β) ∈ L 2 (S 2), where S 2 is the u...

متن کامل

0 60 60 23 v 2 1 2 Ju n 20 06 Distribution of particles which produces a ” smart ” material

If A q (β, α, k) is the scattering amplitude, corresponding to a potential q ∈ L 2 (D), where D ⊂ R 3 is a bounded domain, and e ikα·x is the incident plane wave, then we call the radiation pattern the function A(β) := A q (β, α, k), where the unit vector α, the incident direction, is fixed, and k > 0, the wavenumber, is fixed. It is shown that any function f (β) ∈ L 2 (S 2), where S 2 is the u...

متن کامل

X iv : m at h - ph / 0 60 60 23 v 4 2 6 Ju n 20 06 Distribution of particles which produces a ” smart ” material

If A q (β, α, k) is the scattering amplitude, corresponding to a potential q ∈ L 2 (D), where D ⊂ R 3 is a bounded domain, and e ikα·x is the incident plane wave, then we call the radiation pattern the function A(β) := A q (β, α, k), where the unit vector α, the incident direction, is fixed, and k > 0, the wavenumber, is fixed. It is shown that any function f (β) ∈ L 2 (S 2), where S 2 is the u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008